Who is Online

We have 69 guests and no members online

 

Solar

 

The overwhelming advantage of solar is that the energy resource is well in excess of any other renewable or fossil fuel and the source energy is close to limitless.

 

The practical limitation is that the cost of capturing the energy and transporting it in a useful form (as electricity or perhaps hydrogen) is many times higher than that of already available energy resources.

 

Terrestrial solar suffers from an inherently lower capacity factor than a good wind province (17-30 solar: 20-35 wind) and is also affected by macro-location issues due to clouds; hours in the day; horizon and shading issues. Atmospheric absorption (air mass) falls with altitude but rises with the angle of the sun below the zenith (directly overhead). Outside the tropics air mass absorption is strongly affected by latitude, particularly when the sun is low in the sky early and late in the day.

 

Thus the desert areas of Australia, India and Africa and South America (particularly at higher altitudes) are optimum solar provinces. A good deal of the US has excellent solar incidence.

 

image027 

 

 

 

Solar suffers similar intermittency issues to wind. In many urban (non-desert) areas cloud cover and rain seriously reduces the capacity factor and of course the solar capacity factor is seasonal, particularly outside the tropics.

 

Except for air conditioning, solar energy is not available when it is most needed by consumers (in winter and at night) and too intermittent, without storage, for use by industry. Thus an additional storage cost needs to be factored in and for solar, often the cost of additional long distance electricity transmission from desert or high altitude provinces.

 

Photovoltaic (PV) solar is already widely used ‘off grid’ for small and emergency power supply and feed-in applications. The main advantage of PV solar is, relatively maintenance free and reliable, direct electricity generation; suitable for charging batteries.

 

Extracting about four times the energy from a given area of PV solar panel without increasing the cost; reducing the cost fourfold; or combining solar at low cost with another purpose (like incorporating solar collection into windows, roofing materials and/or wall panels) could make PV solar price competitive with current generation wind technology.

 

In Australia marginal solar will become progressively more attractive to large scale generators if/when the value of a REC (or equivalent ETS) rises above $200.

 

It seems evident from the literature that researchers are more confident that the cost of PV Solar (based on the cost of electronic technology) is more amenable to future cost reductions than either wind or thermal solar.

 

For example: modern cadmium telluride (CdTe) thin film photovoltaic (PV) solar cells presently cost about US$110/m2 and can produce around 100 to 150 watts per m2. Higher efficiencies[23] have been achieved in the laboratory (up to 20%). This would increase the energy collected over each square metre. Production improvements and higher volumes might lower the pre installation panel cost to say $0.50 per square metre. To this needs to be added the cost of installation, support-structures cabling and so on; but intelligent building design might incorporate these into roofs or walls. In a ‘real-world’ environment, with a good solar incidence (low latitude/high altitude) and capacity factor (low shading /low cloud environment), it is hoped that a cost per kWh of 8 US cents can be achieved within a decade. At this point PV Solar may become price competitive with current large scale (optimised) wind[24].

 

The main competing PV technology is the more mature crystalline silicone. In general this is presently less amenable to further cost reduction but mono-crystalline silicon designs may be able to achieve equal or higher efficiency.

 

In the large scale renewable sector wind has presently substantially outstripped solar due to lower capital cost per kWh delivered but anticipating higher value RECs some wind projects propose a PV solar co-generation installation. This may serve to better smooth fluctuations in either supply and better utilise transmission infrastructure.

 

Apart from PV solar there are numerous thermal solar designs. These typically use mirrors or occasionally lenses to focus the sun’s energy onto an energy absorbing element. This may be located on a tower or directly in front of a parabolic mirror. The absorbing medium (high temperature liquid and/or gas) then transfers heat to an engine that drives a generator or performs an energy absorbing chemical separation.

There are fundamental thermodynamic laws that constrain the efficiency of these processes and require very large collection areas in proportion to the solar incidence (insolation). These in turn tend to result in very high capital costs. As with PV solar development work is directed towards improving energy capture per square metre of collector (efficiency) and reducing the cost per square meter of collector. At this stage thermal solar is relatively mature with over 100 years of development but no breakthrough has yet overcome these cost hurdles.

For example, the first solar power station in Australia was commissioned in 1979 at White Cliffs NSW. White Cliffs is in the far North West of the State, adjacent to SA and Qld and was chosen because it has the highest insolation in the State. It consisted of fourteen three-metre parabolic dishes focussed on a collector, where water was boiled to drive a steam engine, delivering up to 25kWe and complimenting the town’s diesel generator. The town was connected to the grid in 1996. At this point the station was converted to experimental photovoltaic (used as grid feed-in). It ceased operation in 2004.

 

The largest commercial solar power station in Europe is the Andasol parabolic trough solar thermal power plant in Granada, Spain. Andasol 2 went online in March 2009. Andasol 3 is currently under construction. Because of the high altitude (1,100 m) and the desert climate, the site has exceptionally high annual direct insolation of 2,200 kWh/m² (7,920 MJ/m²) per year. Each Andasol plant has a gross electricity output of 50 megawatts (MWe), producing around 180,000 MWh per year. Each collector has a surface of 51 hectares; occupying about 200 ha of land.

 

 

 

 

image029
Source: Andasol Publicity Shot

 

Solar plant is considerably more physically compact than wind; compare Andasol with the Capital Wind Farm generating 450,000 MWh per year over a total site of 35 square km (but less equipment overall).

 

Each unit has a molten salt[25] thermal storage system which absorbs surplus heat produced at midday. A full thermal reservoir (in summer) can continue to run the turbine for about 7.5 hours at full-load after sunset. Energy storage improves the capacity factor of the Andasol facility to a claimed 41%, with a considerably less fluctuating power curve than non-storage configurations. Each Andasol plant cost approximately AUS$500M ($10,000/kW) and the commercial viability is said to depend on a huge subsidy; equivalent to between $400 and $600/MWh[26] (in Australia equivalent to a REC + ETS price of $400 to $500).

By comparison a 2,000 kW wind turbine costs around one seventh of this per rated kW. The Capital Wind Farm cost approximately $210 million ($3.1 million per turbine installed; $1,493/kW capacity). After adjusting for its improved capacity factor, due to thermal storage (but not taking into account differences in maintenance or capital servicing), Andasol solar power is around six times the delivered price of electricity from the Capital Wind Farm.

In Australia an advanced solar thermal pilot plant under construction at Newcastle is based on 450 collecting mirrors (4000 m2) together with a 30 m high tower and associated heat engine (turbine and generator). The projected output is 200 kW at a (pilot) cost of $5 million ($25,000/kW – two and a half times that of Andasol).

 

In NSW similar cloud free solar provinces to Andasol are many times more distant from the grid than proven wind resources. White Cliffs is the only town in NSW with similar insolation; but there are less remote areas of Australia (in Qld, SA, and WA) that are similar or better solar provinces. These may well become economic before any in NSW.

 

Together these factors that suggest it will be a considerable time before large scale thermal solar becomes competitive with wind in NSW; even with a REC price rising (in combination with an ETS) to provide a subsidy comparable to that supporting Andasol.

 

 

 

No comments

Travel

Israel

 

 

 

 

 

2024 Addendum

 

It's shocking that another Addendum to this article is necessary.

Yet, we are no nearer to a peaceful resolution like the, internationally called for, 'Two state solution', or some workable version thereof.

Indeed, the situation, particularly for Palestinians, has gone from bad to worse.

At the same time, Israeli losses are mounting as the war drags on.  Yet, Hamas remains undefeated and Bibi remains recalcitrant.

Comments:

 On Wed, 4 Sep 2024, at 1:23 PM, Barry Cross wrote:
> There seems to be no resolution to the problem of the disputed land of Israel. You consider Gaza to have been put under siege, but I wonder if that and the other Israeli acts you mention are themselves responses to a response by them of being under siege, or at least being seriously threatened, by hostile forces who do not recognise the legitimacy of the state of Israel? Hamas’s claim and stated intention of establishing a Palestinian state “from the river to the sea” and periodic acts of aggression need to be taken into account I suggest, when judging the actions of the Israeli’s. In addition, there is the menace coming from Iranian proxies in Southern Lebanon and Yemen, and from Iran itself.
>
> Whatever the merits of the respective claims to the contended territory might be, it seems reasonable to accept that Israeli’s to consider they are a constant threat to their very survival. Naturally, this must influence their actions, particularly in response to the many acts of aggression they have been subjected to over many decades. By way of contrast, how lucky are we!
>
> These are my off the cuff comments for what they are worth.
>
> Regards
> Barry Cross
>
> Sent from my iPhone

 

 

 

2023 Addendum

 

It's a decade since this visit to Israel in September 2014.

From July until just a month before we arrived, Israeli troops had been conducting an 'operation' against Hamas in the Gaza strip, in the course of which 469 Israeli soldiers lost their lives.  The country was still reeling. 

17,200 Garzan homes were totally destroyed and three times that number were seriously damaged.  An estimated 2,000 (who keeps count) civilians died in the destruction.  'Bibi' Netanyahu, who had ordered the Operation, declared it a victory.

This time it's on a grander scale: a 'War', and Bibi has vowed to wipe-out Hamas.

Pundits have been moved to speculate on the Hamas strategy, that was obviously premeditated. In addition to taking hostages, it involving sickening brutality against obvious innocents, with many of the worst images made and published by themselves. 

It seemed to be deliberate provocation, with a highly predictable outcome.

Martyrdom?  

Historically, Hamas have done Bibi no harm.  See: 'For years, Netanyahu propped up Hamas. Now it’s blown up in our faces' in the Israel Times.

Thinking about our visit, I've been moved to wonder how many of today's terrorists were children a decade ago?  How many saw their loved ones: buried alive; blown apart; maimed for life; then dismissed by Bibi as: 'collateral damage'? 

And how many of the children, now stumbling in the rubble, will, in their turn, become terrorists against the hated oppressor across the barrier?

Is Bibi's present purge a good strategy for assuring future harmony?

I commend my decade old analysis to you: A Brief Modern History and Is there a solution?

Comments: 
Since posting the above I've been sent the following article, implicating religious belief, with which I substantially agree, save for its disregarding the Jewish fundamentalists'/extremists' complicity; amplifying the present horrors: The Bright Line Between Good and Evil 

Another reader has provided a link to a perspective similar to my own by Australian 'Elder Statesman' John MenadueHamas, Gaza and the continuing Zionist project.  His Pearls and Irritations site provides a number of articles relating to the current Gaza situation. Worth a read.

The Economist has since reported and unusual spate of short-selling immediately preceding the attacks: Who made millions trading the October 7th attacks?  

Money-making by someone in the know? If so, it's beyond evil.

 

 

A Little Background

The land between the Jordan river and the Mediterranean Sea, known as Palestine, is one of the most fought over in human history.  Anthropologists believe that the first humans to leave Africa lived in and around this region and that all non-African humans are related to these common ancestors who lived perhaps 70,000 years ago.  At first glance this interest seems odd, because as bits of territory go it's nothing special.  These days it's mostly desert and semi-desert.  Somewhere back-o-Bourke might look similar, if a bit redder. 

Yet since humans have kept written records, Egyptians, Canaanites, Philistines, Ancient Israelites, Assyrians, Babylonians, Persians, Greeks, Romans, Byzantines, early Muslims, Christian Crusaders, Ottomans (and other later Muslims), British and Zionists, have all fought to control this land.  This has sometimes been for strategic reasons alone but often partly for affairs of the heart, because this land is steeped in history and myth. 

Read more: Israel

Fiction, Recollections & News

Alan Turing and The Imitation Game

 

The movie The Imitation Game is an imaginative drama about the struggles of a gay man in an unsympathetic world. 

It's very touching and left everyone in the cinema we saw it in reaching for the tissues; and me feeling very guilty about my schoolboy homophobia. 

Benedict Cumberbatch, who we had previously seen as the modernised Sherlock Holmes, plays Alan Turing in much the same way that he played Sherlock Holmes.  And as in that series The Imitation Game differs in many ways from the original story while borrowing many of the same names and places.

Far from detracting from the drama and pathos these 'tweaks' to the actual history are the very grist of the new story.  The problem for me in this case is that the original story is not a fiction by Conan Doyle.  This 'updated' version misrepresents a man of considerable historical standing while simultaneously failing to accurately represent his considerable achievements.

Read more: Alan Turing and The Imitation Game

Opinions and Philosophy

On Hume and Biblical Authority

 

 

2011 marks 300 years since the birth of the great David Hume.  He was perhaps the greatest philosopher ever to write in the English language and on these grounds the ABC recently devoted four programs of The Philosopher’s Zone to his life and work.  You will find several references to him if you search for his name on this website. 

 

Read more: On Hume and Biblical Authority

Terms of Use

Terms of Use                                                                    Copyright