Who is Online

We have 95 guests and no members online

 

 

As the energy is essentially free, renewable electricity costs, like those of nuclear electricity, are almost entirely dependent on the up-front construction costs and the method of financing these.  Minimising the initial investment, relative to the expected energy yield, is critical to commercial viability.  But revenue is also dependent on when, and where, the energy can be delivered to meet the demand patterns of energy consumers.

For example, if it requires four times the capital investment in equipment to extract one megawatt hour (1 MWh) of useable electricity from sunlight, as compared to extracting it from wind, engineers need to find ways of quartering the cost of solar capture and conversion equipment; or increasing the energy converted to electricity fourfold; to make solar directly competitive.

Similarly if a technology produces electricity when consumers don’t want it; or produces it so far from the consumer that most of it is lost in transmission; then the revenue available will be proportionately less than a similar investment that better matches demand; or is located close to where it is consumed.

 

In most developed nations, including Australia, electricity is a traded product with the market price fluctuating from hour to hour; day to day; season to season; in five minute intervals, according to supply and demand.

 

Without government intervention in the market, supply and demand determines the return that is available to an investment; while the engineering solution and qualities of the resource determine the energy that a particular investment can theoretically deliver.

 

Before intervention, current renewable technologies, with the exception of hydro- electricity, are substantially less competitive, in terms of return on investment, than fossil fuels or nuclear electricity.  It follows that wherever alternatives are in use there are other factors at play: such as the cost or practicality of a grid connection; or a government intervention in support of renewables.

In Australian electricity markets this intervention takes the form of Renewable Energy Certificates (RECs) described later. Other governments have other instruments such as cap and trade carbon reduction schemes; carbon taxes; energy buy-back schemes; and tax breaks; to achieve similar ends.

 

In Australia grid losses are of particular concern. Australia’s population of just over 21 million is highly concentrated in a few large cities; just eight cities accounting for over 70% of the population. The largest Sydney; Melbourne; Brisbane; Perth and Adelaide account for 63% but are separated by distances of between 670 and 3,600 km; ‘as the crow flies’. This is similar to the continental USA and a substantially greater area than the entire EEC.

Transmitting electricity over such distances results in significant losses.  The market price received by a generator is therefore influenced by transmission costs and the point on the grid into which electricity generated is injected.  A renewable energy project remote from the points of high demand will receive a lower price than one adjacent. 

Very high voltage DC (HVDC) technology can reduce the net grid loss problem over long distances, and this is in use for links to Tasmania and South Australia, but it adds at least two costly voltage translations and the additional capital cost, together with the low capacity factor of wind and solar, precludes its use in most, if not all renewables dedicated situations.

 

Even with the present substantial and probably increasing REC cross-subsidies from electricity consumers, transmission factors limit the economic distance an exploitable wind or solar resource can be from the main electricity grid and electricity consumers.

 

No comments

Travel

Canada and the United States - Part2

 

 

In Part1, in July 2023, Wendy and I travelled north from Los Angeles to Seattle, Washington, and then Vancouver, in Canada, from where we made our way east to Montreal.

In Part2, in August 2023, we flew from Montreal, Quebec, Canada, down to Miami, Florida, then Ubered to Fort Lauderdale, where we joined a western Caribbean cruise.

At the end of the cruise, we flew all the way back up to Boston.

From Boston we hired another car to drive, down the coast, to New York.

After New York we flew to Salt Lake City, Nevada, then on to Los Angeles, California, before returning to Sydney.

Read more: Canada and the United States - Part2

Fiction, Recollections & News

More on 'herd immunity'

 

 

In my paper Love in the time of Coronavirus I suggested that an option for managing Covid-19 was to sequester the vulnerable in isolation and allow the remainder of the population to achieve 'Natural Herd Immunity'.

Both the UK and Sweden announced that this was the strategy they preferred although the UK was soon equivocal.

The other option I suggested was isolation of every case with comprehensive contact tracing and testing; supported by closed borders to all but essential travellers and strict quarantine.   

New Zealand; South Korea; Taiwan; Vietnam and, with reservations, Australia opted for this course - along with several other countries, including China - accepting the economic and social costs involved in saving tens of thousands of lives as the lesser of two evils.  

Yet this is a gamble as these populations will remain totally vulnerable until a vaccine is available and distributed to sufficient people to confer 'Herd Immunity'.

In the event, every country in which the virus has taken hold has been obliged to implement some degree of social distancing to manage the number of deaths and has thus suffered the corresponding economic costs of jobs lost or suspended; rents unpaid; incomes lost; and as yet unquantified psychological injury.

Read more: More on 'herd immunity'

Opinions and Philosophy

Carbon Capture and Storage

 

 

(Carbon Sequestration)

 

 

The following abbreviated paper is extracted from a longer, wider-ranging, paper with reference to energy policy in New South Wales and Australia, that was written in 2008. 
This extract relates solely to CCS.
The original paper that is critical of some 2008 policy initiatives intended to mitigate carbon dioxide emissions can still be read in full on this website:
Read here...

 

 

 


Carbon Sequestration Source: Wikimedia Commons

 

This illustration shows the two principal categories of Carbon Capture and Storage (Carbon Sequestration) - methods of disposing of carbon dioxide (CO2) so that it doesn't enter the atmosphere.  Sequestering it underground is known as Geosequestration while artificially accelerating natural biological absorption is Biosequestration.

There is a third alternative of deep ocean sequestration but this is highly problematic as one of the adverse impacts of rising CO2 is ocean acidification - already impacting fisheries. 

This paper examines both Geosequestration and Biosequestration and concludes that while Biosequestration has longer term potential Geosequestration on sufficient scale to make a difference is impractical.

Read more: Carbon Capture and Storage

Terms of Use

Terms of Use                                                                    Copyright