Who is Online

We have 117 guests and no members online

(Carbon Sequestration)

 

 

 

Carbon sequestration 2009 10 07
Carbon Sequestration Source: Wikimedia Commons

 

At the present state of technological development in NSW we have few (perhaps no) alternatives to burning coal.  But there is a fundamental issue with the proposed underground sequestration of carbon dioxide (CO2) as a means of reducing the impact of coal burning on the atmosphere. This is the same issue that plagues the whole current energy debate.  It is the issue of scale. 

Disposal of liquid CO2: underground; below the seabed; in depleted oil or gas reservoirs; or in deep saline aquifers is technically possible and is already practiced in some oil fields to improve oil extraction.  But the scale required for meaningful sequestration of coal sourced carbon dioxide is an enormous engineering and environmental challenge of quite a different magnitude. 

It is one thing to land a man on the Moon; it is another to relocate the Great Pyramid (of Cheops) there.

The underground volume required to dispose of coal sourced carbon dioxide is over five times that occupied by the coal that produced it. As discussed in more detail below, to liquify and sequester just 25% of NSW coal sourced CO2 annually (for example that produced by coal fired electricity) would fill a volume of 63 thousand million cubic metres (=251 Km square by 1m deep).  As it is expected that this liquid would be pumped into porous strata, where it will fill interstitial voids to perhaps 10% of the volume, several thousand thousand square kilometers of strata would be required annually. These volumes would also require hundreds of kilometres of high pressure distribution pipeline and hundreds of injection bore holes the diameter and depth of oil wells. 

Within a few years, the underground sequestration site (or sites) required for CO2 would underlie hundreds of thousands of square kilometres of NSW countryside with high pressure liquid/solid phase CO2 that would pose probably insurmountable: geological; engineering; environmental; aesthetic; safety; and cost issues.

Power generation metals smelting and the mining that supports them are amongst civilisation’s largest enterprises.  Present installed coal thermal generating plant capacity in NSW is 12.6 GW.  This is the largest electricity generation capacity of any Australian State (32.4% of the total) and bigger than many developed countries including Switzerland, New Zealand and Denmark. But this capacity is dwarfed in world terms. China adds this capacity every few months.  A single project, their three gorges dam, will have double our entire capacity. We are small players on the world stage and what we do makes little material difference.

NSW is heavily dependent on coal. In 2005-6 the New South Wales (NSW) coal mining industry produced around 161.3 million tonnes (Mt) of raw coal, yielding 124.7 Mt of saleable coal in 2005-06. This accounted for $8.5 billion in income, or 73% of the total value of the NSW mining sector. Exports of 89.8 Mt of thermal and metallurgical coal totalled approximately $6.7 billion in value, while domestic consumption of 33 Mt of coal by the power, steel and other industries totalled $1.8 billion in value. The remaining saleable coal was placed into mining stocks.[1] Since that time exports have increased and the coal price has more than doubled.  Coal is presently worth at least $15 billion a year to the NSW economy, disregarding its economic multipliers.

 

 

No comments

Travel

Cruising to PNG

 

 

 

 

On the 17th February 2020 Wendy and I set sail on Queen Elizabeth on a two week cruise up to Papua New Guinea, returning to Sydney on 2nd March. 

Read more: Cruising to PNG

Fiction, Recollections & News

Reminiscing about the 50’s

 

This article was written in 2012 and already some of the changes noted have changed.
For example, in the decade that followed, 'same sex' marriage became legal. And sadly, several of those friends and relations I've mentioned, including my brother, died. 
No doubt, in another decade, there will be yet more change.

 

 

Elsewhere on this site, in the article Cars, Radios, TV and other Pastimes,   I've talked about aspects of my childhood in semi-rural Thornleigh on the outskirts of Sydney, Australia. I've mentioned various aspects of school and things we did as kids.

A great many things have changed.  I’ve already described how the population grew exponentially. Motor vehicles finally replaced the horse in everyday life.  We moved from imperial measurements and currency to decimal currency and metric measures.  The nation gained its self-confidence particularly in the arts and culture.  I’ve talked about the later war in Vietnam and Australia embracing of Asia in place of Europe.

Here are some more reminiscences about that world that has gone forever.

Read more: Reminiscing about the 50’s

Opinions and Philosophy

Renewable Electricity

 

 

As the energy is essentially free, renewable electricity costs, like those of nuclear electricity, are almost entirely dependent on the up-front construction costs and the method of financing these.  Minimising the initial investment, relative to the expected energy yield, is critical to commercial viability.  But revenue is also dependent on when, and where, the energy can be delivered to meet the demand patterns of energy consumers.

For example, if it requires four times the capital investment in equipment to extract one megawatt hour (1 MWh) of useable electricity from sunlight, as compared to extracting it from wind, engineers need to find ways of quartering the cost of solar capture and conversion equipment; or increasing the energy converted to electricity fourfold; to make solar directly competitive.

Read more: Renewable Electricity

Terms of Use

Terms of Use                                                                    Copyright