Who is Online

We have 211 guests and no members online

 

Biosequestration

As previously mentioned the vast proportion of CO2 in the atmosphere is naturally released and is in turn naturally absorbed.  Some is dissolved in rain and ultimately acidifies the oceans but a great deal is absorbed by plants in the process of photosynthesis; consuming water and usually releasing oxygen. 

This is a natural solar collector.  Plant absorption is increased if CO2 levels rise and plants have access to sufficient water and sunlight.  Trials have been undertaken at higher CO2 levels with a number of existing economic plants to determine such things as the ‘fertiliser effect’ higher water uptake and increased solar absorption. 

Obviously producing biofuel or food does not permanently sequester carbon and any credit should only apply the solar energy collected by the process; as this, in turn, reduces dependence on other energy sources. To get a full credit, similar technology might produce cellulose that could be charred and buried to improve soils or other carbon rich materials that could be safely buried in depleted mines or other suitable sites. Charing and burying of bagasse, straw and wood-waste is already a recognised sequestration technology.

Natural biosequestration is happening already.  Accelerated Biosequestration is more problematic, in part because the CO2 emitted by industrial processes is dirty and if used directly would kill most plants or algae. So it must first be cleaned and this can be both difficult and expensive.

It is clear that accelerated CO2 absorption by conventional agriculture and plants, for example by reticulating CO2 to greenhouses or forests, would be costly and would not fully deal with the vast quantities of CO2 involved.  But some plants and bacteria evolved when CO2 levels were very much higher and it appears to be possible to exploit their genome to modify them or other plants and organisms, to produce economically useful materials; at the same time absorbing large volumes of CO2.

Several projects are already in underway internationally.  The most interesting involve algae that could be used to produce diesel fuel, directly or as chemical feedstock.  Other, possibly complimentary, options include modifying food crops like rice (to a C4 plant) so that additional CO2 and sunlight are absorbed (and carbohydrate yields improved).

Again the problem is the scale required to make a difference. A very large solar collection area is required together with plentiful water.  Areas comparable to present broad acre agriculture will be required, probably as shallow lakes.  It would be particularly useful if algae that are comfortable in salt water could be adapted.

Again there are safety issues to be considered. These vast lakes or fields will be filled with genetically modified organisms and the regulatory environment relating to GM organisms and foods would need to be changed accordingly. 

Like the introduction of the Cane Toad to Australia, the cure could well turn out to be worse than the disease.

 

No comments

Travel

Russia

 

 

In June 2013 we visited Russia.  Before that we had a couple of weeks in the UK while our frequent travel companions Craig and Sonia, together with Sonia's two Russian speaking cousins and their partners and two other couples, travelled from Beijing by the trans-Siberian railway.  We all met up in Moscow and a day later joined our cruise ship.  The tour provided another three guided days in Moscow before setting off for a cruise along the Volga-Baltic Waterway to St Petersburg; through some 19 locks and across some very impressive lakes.

Read more: Russia

Fiction, Recollections & News

My Mother's Family

 

 

All my ancestors are now dead.  I'm an orphan. So for this history I've had to rely on my recollections a small pile of documents left by my mother. These include short biographies of several of her relatives. Following the female line; these recollections briefly span the two world wars; to the present.

Read more: My Mother's Family

Opinions and Philosophy

Luther - Father of the Modern World?

 

 

 

 

To celebrate or perhaps just to mark 500 years since Martin Luther nailed his '95 theses' to a church door in Wittenberg and set in motion the Protestant Revolution, the Australian Broadcasting Commission has been running a number of programs discussing the legacy of this complex man featuring leading thinkers and historians in the field. 

Much of the ABC debate has centred on Luther's impact on the modern world.  Was he responsible for today? Without him, might the world still be stuck in the 'Middle Ages' with each generation doing more or less what the previous one did, largely within the same medieval social structures?  In that case could those inhabitants of an alternative 21st century, obviously not us, as we would never have been born, still live in a world of less than a billion people, most of them working the land as their great grandparents had done, protected and governed by an hereditary aristocracy, their mundane lives punctuated only by variations in the weather; holy days; and occasional wars between those princes?

Read more: Luther - Father of the Modern World?

Terms of Use

Terms of Use                                                                    Copyright