* take nothing for granted    
Unless otherwise indicated all photos © Richard McKie 2005 - 2021

Who is Online

We have 142 guests and no members online

Article Index

The Indian Caste System

 

One of Ghandi’s positive contributions was to realise that the great majority of India’s population was endemically poor and undereducated as a result of the caste system. To realise its potential India needed to abolish Caste and educate its masses. The Indian Constitution specifically outlaws caste-based discrimination, ‘in keeping with the socialist, secular, democratic principles that founded the nation’.

Again the British are often blamed as the Raj was generally comfortable with social class distinctions and did little to aid class mobility in India. For such a small number to maintain control over so many they needed to support the existing social hierarchy (of princes and nawabs) and to place themselves above it. ‘Keeping up appearances’ was the principal survival strategy and a social necessity. Yet by 1946 it was clear that the British considered the removal of the caste system a priority in post-war India.

In 1948 both  my parents’ and my uncle’s family came to Australia from England. So did a number of British refugees from the Raj. During the War, Uncle Jim had been a British Army Officer (Engineer) based in India. As a result we had some passing social interactions with the British expatriates; mainly cocktail parties (Haw-Haw, Pims, ‘another G&T’, Noël Coward on the ‘gramophone’, ‘so hard to get a good gardener’). It is easy to see how they pissed off the Indians. They certainly managed it with the Australians.

Caste discrimination is illegal in India in all areas of government and business.  It is claimed to be more or less eradicated in large cities. But people are obviously still very much aware of their social status and class. Indian politics is riddled with caste references and social status (as everywhere) is reinforced by wealth and education. In rural areas of the country, it is admitted, three quarters of India's population is largely illiterate and still applies the traditional caste distinctions.

 

 

photo

 

We were more than once told that our interlocutor was Brahmin; generally as they directed others to look after us in some way.

In the Hindu scriptures, there are four varnas (castes): the Brahmins (teachers, scholars and priests), the Kshatriyas (kings and warriors), the Vaishyas (agriculturists and traders), and Shudras (service providers and artisans). Within each there are many subdivisions. A subgroup of the latter (or outside the caste system altogether) are Mlechhas (contagious and/or untouchable) – also known as dalits. The Indian census still identifies a full quarter of the population as falling into the lowest castes and ‘scheduled tribes’ and special measures are in place to eliminate discrimination against this group. These lower orders are not restricted to Hindus and the caste system has seeped into all tribes and religions including Christianity.

Unfortunately Ghandi was something of a religious zealot and while actively promoting egalitarian principles failed to decouple class from religion or to suppress religious bigotry. Nehru might have managed it and indeed some steps were taken in this direction, by him and his daughter, Indira Gandhi.

A more effective solution might have been a Chinese style Cultural Revolution to diminish the negative impacts of religion and superstition but this got seriously out of hand in China and I doubt that this would, or could, ever be attempted again.

The Indian population after partition was about 345 million it is now over 1.17 billion.  A concerted and sustained campaign to limit population and provide a basic secular education for everyone ‘in keeping with the socialist, secular, democratic principles that founded the nation’, might well have assisted in containing this growth and in doing so changed the face of more than a sixth of humanity. But although some attempts were made, this has proven to be a task well beyond the capability of any subsequent Indian government.

I consider a modern enlightened State to be one in which individuals can enjoy, as they choose, long, productive, healthy and egalitarian lives; having full and equal (preferably State provided) access to education that allows them to partake equally in the intellectual and material benefits of human knowledge and experience; free from the imposition of outdated or supernatural beliefs and fears or appeals to ancient (and in the light of modern knowledge, concocted) authority; free from predefined societal roles (based on family background or race, rather than personal merit); and free from violence or condemnation from others (physical, emotional, social or judgmental).

Despite the noble intentions along these lines, set forth in 1947 by Gandhi and Nehru, it seems to me that for the majority of its citizens, India has a long journey ahead in its progress towards such an enlightened State.

 

Richard

 

 


 

 

Selected India photos

 

The sequence is: Mumbai; Udaipur; Jodphur; Jaisalmer; Jaipur; Varanasi; Agra; Delhi; and  Shimla
(Google Earth maps separate locations)

 

 

 India overview

Click on the image above to see the photo album

 


    Have you read this???     -  this content changes with each opening of a menu item


Travel

USA - middle bits

 

 

 

 

 

In September and October 2017 Wendy and I took another trip to the United States where we wanted to see some of the 'middle bits'.  Travel notes from earlier visits to the East coast and West Coast can also be found on this website.

For over six weeks we travelled through a dozen states and stayed for a night or more in 20 different cities, towns or locations. This involved six domestic flights for the longer legs; five car hires and many thousands of miles of driving on America's excellent National Highways and in between on many not so excellent local roads and streets.

We had decided to start in Chicago and 'head on down south' to New Orleans via: Tennessee; Georgia; Louisiana; and South Carolina. From there we would head west to: Texas; New Mexico; Arizona; Utah and Nevada; then to Los Angeles and home.  That's only a dozen states - so there are still lots of 'middle bits' left to be seen.

During the trip, disaster, in the form of three hurricanes and a mass shooting, seemed to precede us by a couple of days.

The United States is a fascinating country that has so much history, culture and language in common with us that it's extremely accessible. So these notes have turned out to be long and could easily have been much longer.

Read more ...

Fiction, Recollections & News

Outcomes for girls and boys

 

 

A Radio National discussion (May 29 2015) stated that statistically girls outperform boys academically and referenced research suggesting that this has something to do with working parents:

Provocative new research suggests that the outcomes for girls and boys can be different when parents go back to work, in particular mothers.

The big question is WHY?

 

Read more ...

Opinions and Philosophy

The Chemistry of Life

 

 

What everyone should know

Most of us already know that an atom is the smallest division of matter that can take part in a chemical reaction; that a molecule is a structure of two or more atoms; and that life on Earth is based on organic molecules: defined as those molecules that contain carbon, often in combination with hydrogen, oxygen and nitrogen as well as other elements like sodium, calcium, phosphorous and iron.  

Organic molecules can be very large indeed and come in all shapes and sizes. Like pieces in a jigsaw puzzle molecular shape is often important to an organic molecule's ability to bond to another to form elaborate and sometimes unique molecular structures.

All living things on Earth are comprised of cells and all cells are comprised of numerous molecular structures.

Unlike the 'ancients', most 'moderns' also know that each of us, like almost all animals and all mamals, originated from a single unique cell, an ova, that was contributed by our mother.  This was fertilised by a single unique sperm from our father.

This 'fertilisation' triggered the first cell division. These two cells divided; and divided again and again; through gestation and on to birth childhood. So that by the time we are adults we've become a huge colony of approximately thirty seven thousand billion, variously specialised, cells of which between sixty and a hundred billion die and are replaced every day. Thus the principal function of a cell, over and above its other specialised purposes, is replication. 

As a result, the mass of cells we lose each year, through normal cell division and death, is close to our entire body weight. Some cells last much longer than a year but few last longer than twenty years. So each of us is like a corporation in which every employee and even the general manager has changed, yet the institution goes on largely as before, thanks to a comprehensive list of job descriptions carried by every cell - our genome.

Cell replication is what we call 'life'.  The replicating DNA molecule can therefore be regarded as the 'engine of life' or the 'life force' on Earth.  So it is quite a good thing to understand. 

 


What makes us human?

Different animals and plants have different numbers of genes and chromosomes that together make up their genome.  Many are far more complex than humans.  The 32 thousand  human genes are organised into 23 pairs of chromosomes within each of our cells.  But the protein-coding genes, that differentiate us, form only a fraction (about 1.5%) of the instruction and memory data that is stored in DNA. The remainder, coding for other aspects of cell chemistry, seems to be administrative overhead.

When human girls are born, they have about a million eggs in each of their two ovaries, nestled in fluid-filled cavities called follicles. But this number declines quite rapidly so that it is depleted by the time of menopause (usually before 50 years of age). Unless fertility treatment is in use, just one or sometimes two of these (apparently randomly selected) ova descends from the ovaries each menstrual period - down the woman's fallopian tubes where it (or they) may become fertilised if the woman has recently engaged in coitus (had 'sex').

As in vitro fertilization (IVF) demonstrates every day; we now understand that a unique version of your father's genome was injected into your mother's egg by just one of his millions of spermatozoa. So that when the two genomes merged a doubly unique cell, that became you, was the result.

Our genes, that are encoded in their DNA, come in equal proportion from both parents.  Unless we have an identical twin, resulting from division of the zygote (see below) after fertilisation, each of us is genetically unique; our genetic identity determined by that successful fertilisation. 

 

 


Human Reproduction - Click here to Expand

 

Within our species we are said to be of Caucasian or Asian or African appearance, to have dark or fair complexion and so on, and possibly to bear a ‘family resemblance’.  These traits are due to the particular gene variants we have inherited from our parents.

These have been passed down to us, with regular variations, from parent to child, and through many ancestor species, since life began on the planet. And all plants and animals on Earth belong to a single family because we all inherit the same system of reproduction from one original replicating cell, our last universal common ancestor (LUCA) 3.5 to 3.8 billion years ago.

 


Replication

The DNA molecular structure resembles a zip fastener, where each tooth can be any of four molecular bases.  The bases G-C and A-T are each small organic molecules that at one point are covalently bound to a triphosphate (containing three phosphorous atoms) and a sugar group that binds them in a ribbon.  At their free end Guanine is attracted to Cytosine, with triple hydrogen bonds, and Adenine is attracted to Thymine, with double hydrogen bonds. 

In the following notation: black = Carbon;  blue = Nitrogen;  red = Oxygen; white = Hydrogen.   Bars joining them indicate a covalent bond, an electron shared between the atoms.  A double bar indicates two shared electrons.   

 

  Cytosine (C4H5N3O) has a shape that attracts (fits)   Guanine (C5H5N5O) 


but not  Thymine (C5H6N2O2)  or   Adenine (C5H5N5), that attract (fit) each other.

 

Each of these bases is bound to a ribbon of  sugar molecules and at its other end lightly bonds to a matching base on the other half of the 'zipper' such that when it is 'unzipped' each attracts its opposite number (like magnets attracting the opposite pole) thus recreating a new matching half in the same sequence.

 


DNA replication. 

 

This unzipping and reforming is called self-replication. It is going on continuously in all living things as new cells are created to replace those that die. In an adult human around three quarters of a million of our cells divide every second.  This cell division is the process we call organic life and may continue (usually briefly) after we are legally (brain) dead.

Other chemical mechanisms within the cell translate the genetic information stored in the DNA sequence to manufacture the proteins from which new cells are built and differentiate themselves, organising to become our various organs and to thus arrange themselves to form a human; and not a gorilla or a crocodile or a kola or a rose or a cabbage. The human genome project had now identified 32,185 human genes.

Accurate reproduction is very important to the viability of an organism.  Just as: 'WOLF' does not have the same meaning as 'FOWL' the location and order of sequence G-A-T-C within a particular DNA string (chromosome) will result in a different outcome to the sequence C-A-G-T .   And this difference will influence cell structure and purpose:   'The wolf eats the fowl' has a totally different meaning to: 'The fowl eats the wolf'.

This method of storing and reproducing instructions and data is twice as efficient as the binary method we presently use in electronic devices.  For example the binary processor in your computer or reading device requires each character in in each word in this sentence to be encoded in two bytes (each of 8 characters or bits).  In other words 16 ones and zeros are required for every character on this page (eg 'a' = 0000000001100001) and a similar number for each pixel in a simple colour image.  But DNA can encode the same information (sufficient for every unique character and symbol in every language in the world) in just eight characters.

There are a fraction over 3 billion characters in the human genome (3,079,843,747 base pairs).  In computer terms this is equivalent to about three quarters of a gigabyte of information storage. The same data is stored in the nucleus of each of our cells.  This is in nuclear DNA, before taking into account separate, but smaller, storage in each of the mitochondria (see below). 

A 'gig' isn't much you might say (less than $1's worth) but the actual data storage density is in excess of anything offered by our present electronic technology.  Cells are a lot smaller than the chip in a memory stick - there around a billion cells per cubic centimetre in hard tissue.

This also points to another reality.  Had not this replication chemistry been available, and the conditions for the reactions been just right, life could not have occurred in its earthly form. 

Life relying on another replication method that was say binary would be at a disadvantage and would have to use different replication mechanisms.  If there was a chemistry, at different temperatures and chemical concentrations, allowing say six base pairs it would be different again.  We and our cousins (the other animals, plants and other organisms) that are all descended from the original replicating cell (LUCA - see above) are here because the conditions on Earth were and are just right for our kind of life to prosper.

Elsewhere in the universe it may be different.

 


Gene Mapping

Genes are just patterns of chemical molecules that are held within the replicating DNA mechanism.  The way they are encoded onto DNA can be likened to any other mechanism for copying and recording data: a DVD or even a vinyl record or the memory in this computer.  As a result they can be altered or damaged from time to time and some of these variations are successfully copied into subsequent offspring.  If they are particularly advantageous to survival and reproduction these changes, or mutations, rapidly spread throughout the species, so that over tens of thousands of years, individuals successful in one environmental niche are so different from those successful in another that a new species has formed (followed by a new genus, family, order, and so on). 

This process of periodic differentiation has been likened to the branching of a tree but because of the activity of bacteria and viruses and residual DNA that may be reactivated as well as limited cross-species reproduction  (for example later Humans and Neanderthal) it is no longer believed to be quite that simple.

DNA encodes the instructions for creating each cellular colony, defining each species, and each individual within a species. DNA changes over time in such away that each change is a development on previous generations. So it is possible to trace DNA ancestry back through generations of a particular species over time.  For example, DNA studies are increasingly shedding light on the questions around human origins. 

Most animals, including humans, carry two types of DNA.  Our main genome is carried by the chromosomes in the nucleus of each of our cells. This comes from both our parents. The secondary genome, mtDNA, is carried by bacteria-like organelles within each of our cells, that convert sugars for cell energy, called mitochondria. These are all cloned (reproduced by asexual division) from the mitochondria that were within the original egg cell provided by our mother.

Cells may contain from one mitochondrion to several thousand mitochondria depending on species and cell differentiation.  As a result this is the predominant DNA found in a cellular sample.

So our mtDNA comes only from our mother; in turn from her mother; and so on and mtDNA allows us to map the female ancestral line.  This original egg cell was fertilised by a sperm from our father (sperm do not contribute their mitochondria). Once fertilised, the egg cell then divided repeatedly, differentiating in accordance with the coding instructions in our DNA, into the many cells that form the cellular colony that became 'us'.

Males are differentiated from females by a Y chromosome in place of one X. So sons can only inherit this from their father (like their family name in our culture) and periodic mutations in the DNA of the Y chromosome allow the (actual) male ancestral line to be traced back.

As a result of this work we now know that humans on the planet are all descended from a single group that left Africa less than 70 thousand years ago. 

Recent DNA analysis shows that early humans sometimes interbred with the Neanderthal; a separate hominid subspecies that left Africa much earlier and settled in the Middle East and Europe over quarter of a million years ago.

It's amazing to think that we have only understood it within my lifetime. Now the ancient view that people grow from a seed, provided by their father, and gain the spark of life at 'conception' from a god is totally debunked. So throw away all those ancient texts.

 


Viruses

Viruses have been around since life began but they are 'of life', they are not technically 'alive' because they cannot themselves reproduce. They are extremely small - about 70 microns in diametre - and until the invention of electron microscopes in the 1930's their existance had only been inferred. 

To create copies of themselves they need a host cell with the necessary reproductive mechanisms. Over the millennia viruses have evolved the necessary mechanisms to penetrate cells, much like spermatozoa, and inject their DNA or RNA and capture the host's replication mechanisms so that the infected cell begins manufacturing thousands of virion (virus particle) clones of the invader. These then capture other nearby cells in the host animal or plant; or in similar bacteria.  Huge numbers of infected cells are usually destroyed in the process, sometimes killing the plant or animal.

 

Coronavirus particles (yellow) on the surface of a dying cell (that produced them)
Niaid/National Institutes of Health/Science Photo Library (from 
https://www.newscientist.com)

 

But animals plants and bacteria have become familiar with this threat and have in turn evolved means of dealing with or living with viruses to the extent that some are exploited for the benefit of the host.

In turn viruses evolve new strategies to perpetuate their reproduction. Thus new viruses arise from time to time, sometimes jumping from one species to another when an opportunity arises.

Many animals, including humans, have an immune system that has a memory of harmful viruses and means of neutralising them. Thus, once the animal has been infected and survived, the chances of reinfection are reduced.  Vaccines work by presenting our immune system with a harmless sample that allows it to recognise a particular harmful virus.

Since I first wrote this article the World has suffered a new viral pandemic.  It is a novel corona virus for which we have no established immunity and there is no vaccine.  At the end of June 2020 the Covi-19 virus has already killed half a million people.

It is estimated that this virus will no longer find sufficient vulnerable hosts to spread further after infecting around 70% of the populations in which it is spreading.  It has a case fatality rate of just under 1%, that is, of those who catch it just under one in a hundred die.  

Quarantine restrictions are in place in many countries to protect relatively uninfected areas, with local measures to eliminate 'hot spots'.  But the majority of the world's population, in excess of five billion, are in countries in which it is presently spreading.

Unless a vaccine is available soon it seems inevitable that many millions more will be killed.  The economic consequences are also dire.

 

 

 

 


Terms of Use                                           Copyright