* take nothing for granted    
Unless otherwise indicated all photos © Richard McKie 2005 - 2021

Who is Online

We have 47 guests and no members online

 

 

 

 

South Australia has run aground on the long foreseen wind energy reef - is this a lee shore?

Those of you who have followed my energy commentaries published here over the past six years will know that this situation was the entirely predictable outcome of South Australia pressing on with an unrealistic renewable energy target dependent on wind generated electricity, subsidised by market distorting Large-scale Generation Certificates (LGCs) (previously called RECs in some places on this website - the name was changed after their publication).  

 

image011

 

This is a mechanism that is now well beyond its 'use by date'.

That the practical limit to market share is equivalent to the fluctuating energy resource's capacity factor (the percentage of time that the power-station is able to operate at its nominal peak capacity) is not rocket-science.  A fluctuating energy source, like wind, that can fall to as little as nothing in adverse climate conditions and is, on average, available for only about a third of the time, can supply only about a third of the total system energy without becoming redundant.  Thus the system must have the remaining two thirds provided by other energy sources.  In this case, in the absence of the obvious alternative outlined below, this will be provided by fossil-fuelled generation.  And, obviously, if load-sharing and black-outs are not to occur, these other sources must be capable of supplying the entire peak-demand, should no wind be available at that time.  Not rocket science - obvious to 'Blind Freddy' - read more here.

Ways of meeting such mismatches, between wind availability and demand, include interlinks to other parts of the grid and/or rapid response generators like gas turbines.  But interlinks can be problematic as it can't be assumed that other parts of the grid will always be able to respond. Similar climate and demand conditions may be widespread.  So without base-load generators providing the bulk of the remaining two thirds of system energy; and without rapid response peak-load generation; expect trouble.  In addition some redundancy is required. Parts of the system will always be down for maintenance or due to mechanical failure.  There is the old trade-off.  Equipment failure is an inevitable outcome of insufficient scheduled off-line preventative maintenance and/or replacement.

Thus we talk of 'base load' capacity to handle regular demand; peak load capacity to handle peaks in demand and sufficient redundant reserve capacity to cover equipment outages.

The trouble with a fluctuating resource like wind or solar is that it's only there when it's there and that's not necessarily when its wanted, like during periods of high demand.  In this case doubling-up to provide system redundancy is not a solution.  If there is insufficient wind or too much to run the turbines having more turbines will not help. Unlike fuel based power generation, the cost of wind and solar electricity is entirely due to the cost of the equipment.  If there's no wind or sun, redundancy achieves nothing but higher costs.  Doubling-up doubles the real cost of wind or solar energy, even during ideal conditions. Such overinvestment is bad in other ways. When there's too much wind or sun generated electricity but insufficient demand energy prices are driven negative. Then all power stations supplying the energy market become unprofitable.  As some base-load generators can't easily be shut down they become seriously unprofitable; and if there are too many wind turbines this happens even during light wind conditions.  If this goes on for too long, due to excessive investment in wind, under the impact of Large-scale Generation Certificates, the owners of other generators may decide to cut their losses and close, as has happened in South Australia and Victoria.  For a more detailed discussion of the impact of Large-scale Generation Certificates (or RECs) on profitability go: here.

Large-scale Generation Certificates are designed to encourage the market to meet the National Mandatory Renewable Energy Target (MRET).

In a free market, without LGCs, everything would sort itself out over time because wind and solar would only be profitable for those periods when the price of energy about doubled that of base-load coal and gas, curtailing over-investment in these energy sources.  Each wind farm would then compete with the others, and with other suppliers, for the limited peak load market opportunity.  In this situation wind would probably become unprofitable and no one would invest in it so some sort of regulation is probably required, on top of the LGC/REC mechanism.

What is this REC thing that's currently wrecking South Australia? 

To make wind and solar competitive we have a pseudo-market mechanism - the Large-scale Generation Certificates.  These subsidise wind and solar and new hydro-electricity. RECs were initially envisaged as a temporary mechanism to get renewables off-the-ground, to be replaced in due course by a more general carbon cap-and-trade mechanism using tradeable carbon certificates. 

You can read simplified descriptions in previous articles on this website here and here and here.

But the carbon cap-and-trade mechanism proposed by the Federal Treasury and subsequently the Garnaut Climate Change Review - the Carbon Pollution Reduction Scheme (CPRS) - was soon so heavily subverted by political lobbying that the certificate soon looked like a pakapoo ticket.  Carbon rich exclusions quickly included gas and petroleum.  But energy resources have a high degree of interchangeability over time. For example the prices of oil and coal are linked due to the potential for substitution.  So certificates targeted on just part of the carbon market would have been seriously economically distorting.  Carbon is carbon - be it in: petroleum; coal; gas; or even garbage; and any economically neutral carbon trading scheme has to encompass it all.

Yet nothing could be as economically horrendous and distorting as the political alternative the lobbyists and their targets ultimately wrought: the dread Carbon Tax

This economic travesty targeted only so called 'big polluters' (including the electricity sector that already had the REC scheme that was no longer to be removed); had dozens of exceptions; and a compensation scheme that even included some 'big polluters'.  And why raise a tax, allegedly to change consumption behaviour, and then give it back?  You can read my contemporary comments on it here.

Yet as predicted on several occasions, unless we did something to replace them, the Large-scale Generation Certificates (or RECs) would soon out-live their usefulness because the way they work makes new base-load power unprofitable. So the stock of old base-load power stations would wind-down as Australia's electricity generation infrastructure was eroded, from the foundations up.

Fortunately so far for New South Wales and Queensland, quality wind resources close to population centres have been limited and the abundance of such resources in the southern states concentrated investment there. Thus New South Wales has maintained fossil-fired base load capacity at 82%, complimented by gas (7%) and hydro-electricity (5%).  Even photo-voltaic solar (2% - mainly domestic) has out-grown wind generation. 

Both these states could safely use more wind and solar.  The National Mandatory Renewable Energy Target (MRET) ‘to encourage additional generation of electricity from renewable energy sources and achieve reductions in greenhouse gas emissions’ provided a renewable energy target of 20% by 2020.  As indicated above this is technically possible but it gets a bit dodgy over 20%.  The real world capacity factor of solar is generally below 20% (it's dark half the time and there are clouds and shadows in many locations) and that of wind not much better in all but the best locations.  Average that out and maybe 25% is achievable nation wide.  That leaves 75% fossil fuel if we can get a little more hydro-electricity.  That depends on preventing Bob Brown's mob stopping more dams. 

The entire purpose of the MRET is to "achieve reductions in greenhouse gas emissions' to meet an international commitment to reduce the national carbon footprint.  South Australia, with 13,068 GWh pa (47 PJ - petajoules) in 2014-15 contributed around a twentieth of the nation's total electricity generation of 252,359 GWh (908.5 PJ). 

Nevertheless, wind generation in South Australia has now reached 4,292 GWh (15.5 PJ) - 33% of the State's total electricity generation.  This now exceeds the median capacity factor of the State's wind turbines. Very predictably, approaching this limit has led to base-load closures and consequent blackouts. These have been accompanied by the highest electricity prices in the land; a lot of redundant, carbon intensive hardware, particularly when demand is low or no wind is blowing; and now, a lot of economic pain and individual hardship, with business stock losses, numerous injuries and even premature deaths due to the blackouts.

 

image004

 

The State can't realistically blame this on the Commonwealth.  The National Mandatory Renewable Energy Target has been a long standing joint State/Commonwealth initiative, supported by both major political parties.  Politicians in South Australia, Victoria and Tasmania cheered on the proliferation of wind farms with glee, often claiming personal credit, while spruiking their state's 'green' credentials. Some have set higher, unrealistic local targets for renewables, in total disregard for the practical limitations or the consequences.

Now the same politicians are running for cover.  Meanwhile, nobody mentions that all this pain and economic cost that is not limited to South Australia has had negligible impact on its intended purpose - a reduction in Australia's domestic carbon footprint of 5,795.4 PJ - calculated as total domestic energy consumption (5,919.6 PJ) less renewable electricity (124.2 PJ), mainly hydro-electricity (48.4 PJ) and wind generation (41.3 PJ).

To generate 909 PJ of electricity in 2014-15 the Australian electricity generation sector consumed 1,667 PJ of coal and petroleum (28% of the total domestic energy consumption).  The difference is due to materials handling energy costs and conversion inefficiencies.  As an aside, this additional carbon overhead is before grid and other losses and is one reason that all-electric cars have a larger carbon footprint than hybrid-petroleum fuelled cars in Australia. Battery storage is not without further inefficiencies.

All this focus on electricity is playing at the edges.  Australia's domestic carbon footprint is dwarfed by our total, real, carbon footprint.   In 2014-15 this totalled 21,236 PJ (production and imports of carbon less total renewables) because almost three-quarters of this carbon (15,680 PJ or 73%) was exported in various forms to be burnt overseas. 

The bottom line is that all the South Australian pain and financial sacrifice has been made to install sufficient wind generation to reduce Australia's total carbon footprint by just over 15 PJ a year - or about 0.073%. Well done!  That's the Gallipoli spirit.

In the short term South Australia needs more fossil energy to provide energy when there is no wind.  Some have talked of renationalisation but that simply transfers private sector loss making assets to the taxpayer.  In the absence of a clean green solution suggested below profitability needs to be restored to the the intrinsically lower cost fossil-fuel sector.

To encourage the private sector the Large-scale Generation Certificates must be altered in some way to reduce the subsidy to wind energy when the demand for unsubsidised energy is low.  One such amendment might be to apply LGC's equally to renewable and non-renewable energy when demand falls below a benchmark to ensure a minimum base-load energy contribution.  Counterintuitively this would lower the cost of energy to the consumer, while simultaneously causing the wind generators to review the viability of their less productive turbines that are currently robbing the fossil generators of their profits.

 

image002

 

Few politicians choose to mention that there is one bright light in all this; and here South Australia can do its bit for the nation yet again. 

Even adopting wind generation to the practical maximum of say 30% nationwide (about 303 PJ) will have little impact on the world climate or even on our own carbon footprint of over 21,000 PJ.  Australia's biggest contribution to reducing humanity's dangerously swelling carbon footprint is our export of uranium. 

Australian nuclear energy presently displaces carbon consumption equivalent to 3,000 PJ a year overseas.  But this light has dimmed over the past decade.  Recently uranium exports have fallen to less than half their peak back in 2004. 

Strangely, some of these who claim to be concerned about global carbon emissions, frequently 'dam busters' to boot, actually applaud this decline.  Yet increasing our annual uranium exports by just 10% would have the same impact on global carbon emissions as increasing our present domestic renewable electricity generation by 250%.  As hydro-electricity is the main renewable, that's a lot of dams.

Some concerns about uranium exports may be valid. As we all know some nations, like India, refuse to sign the Nuclear Proliferation Treaty, so letting them have our uranium is like giving matches to a baby. Others are geologically unstable.

So wouldn't it be better to keep those matches to ourselves?

Just 26% of current uranium exports (of approximately 3,000 PJ) could replace all the fossil fuels we presently burn in Australia to produce electricity.

Why don't we begin by replacing our base-load coal electricity generation with nuclear power, as they have in France?  Follow the link to see just one of these in its rural setting on the Rhône, not far from town: here  Très belle!

We could start in NSW by chucking out most of those dirty old furnaces, bag houses; smoke stacks; and coal handling systems where they are and putting nice clean high temperature reactors in their place.  We could even paint some big signs on them indicating out commitment to zero emissions, as they do in France, Europe's largest electricity exporter.

 

Cruas Nuclear Power Station

 

Simplistic?  Yes I know - but not too hard.  We could begin right now.

 

 All numbers courtesy of the Australian Government Department of Industry Innovation and Science - Australian Energy Statistics

 

 

 

 


    Have you read this???     -  this content changes with each opening of a menu item


Travel

India and Nepal

 

 

Introduction

 

In October 2012 we travelled to Nepal and South India. We had been to North India a couple of years ago and wanted to see more of this fascinating country; that will be the most populous country in the World within the next two decades. 

In many ways India is like a federation of several countries; so different is one region from another. For my commentary on our trip to Northern India in 2009 Read here...

For that matter Nepal could well be part of India as it differs less from some regions of India than do some actual regions of India. 

These regional differences range from climate and ethnicity to economic wellbeing and religious practice. Although poverty, resulting from inadequate education and over-population is commonplace throughout the sub-continent, it is much worse in some regions than in others.

Read more ...

Fiction, Recollections & News

Cars, Radios, TV and other Pastimes

 

 

I grew up in semi-rural Thornleigh on the outskirts of Sydney.  I went to the local Primary School and later the Boys' High School at Normanhurst; followed by the University of New South Wales.  

As kids we, like many of my friends, were encouraged to make things and try things out.  My brother Peter liked to build forts and tree houses; dig giant holes; and play with old compressors and other dangerous motorised devices like model aircraft engines and lawnmowers; until his car came along.

 

Read more ...

Opinions and Philosophy

The Chemistry of Life

 

 

What everyone should know

Most of us already know that an atom is the smallest division of matter that can take part in a chemical reaction; that a molecule is a structure of two or more atoms; and that life on Earth is based on organic molecules: defined as those molecules that contain carbon, often in combination with hydrogen, oxygen and nitrogen as well as other elements like sodium, calcium, phosphorous and iron.  

Organic molecules can be very large indeed and come in all shapes and sizes. Like pieces in a jigsaw puzzle molecular shape is often important to an organic molecule's ability to bond to another to form elaborate and sometimes unique molecular structures.

All living things on Earth are comprised of cells and all cells are comprised of numerous molecular structures.

Unlike the 'ancients', most 'moderns' also know that each of us, like almost all animals and all mamals, originated from a single unique cell, an ova, that was contributed by our mother.  This was fertilised by a single unique sperm from our father.

This 'fertilisation' triggered the first cell division. These two cells divided; and divided again and again; through gestation and on to birth childhood. So that by the time we are adults we've become a huge colony of approximately thirty seven thousand billion, variously specialised, cells of which between sixty and a hundred billion die and are replaced every day. Thus the principal function of a cell, over and above its other specialised purposes, is replication. 

As a result, the mass of cells we lose each year, through normal cell division and death, is close to our entire body weight. Some cells last much longer than a year but few last longer than twenty years. So each of us is like a corporation in which every employee and even the general manager has changed, yet the institution goes on largely as before, thanks to a comprehensive list of job descriptions carried by every cell - our genome.

Cell replication is what we call 'life'.  The replicating DNA molecule can therefore be regarded as the 'engine of life' or the 'life force' on Earth.  So it is quite a good thing to understand. 

 


What makes us human?

Different animals and plants have different numbers of genes and chromosomes that together make up their genome.  Many are far more complex than humans.  The 32 thousand  human genes are organised into 23 pairs of chromosomes within each of our cells.  But the protein-coding genes, that differentiate us, form only a fraction (about 1.5%) of the instruction and memory data that is stored in DNA. The remainder, coding for other aspects of cell chemistry, seems to be administrative overhead.

When human girls are born, they have about a million eggs in each of their two ovaries, nestled in fluid-filled cavities called follicles. But this number declines quite rapidly so that it is depleted by the time of menopause (usually before 50 years of age). Unless fertility treatment is in use, just one or sometimes two of these (apparently randomly selected) ova descends from the ovaries each menstrual period - down the woman's fallopian tubes where it (or they) may become fertilised if the woman has recently engaged in coitus (had 'sex').

As in vitro fertilization (IVF) demonstrates every day; we now understand that a unique version of your father's genome was injected into your mother's egg by just one of his millions of spermatozoa. So that when the two genomes merged a doubly unique cell, that became you, was the result.

Our genes, that are encoded in their DNA, come in equal proportion from both parents.  Unless we have an identical twin, resulting from division of the zygote (see below) after fertilisation, each of us is genetically unique; our genetic identity determined by that successful fertilisation. 

 

 


Human Reproduction - Click here to Expand

 

Within our species we are said to be of Caucasian or Asian or African appearance, to have dark or fair complexion and so on, and possibly to bear a ‘family resemblance’.  These traits are due to the particular gene variants we have inherited from our parents.

These have been passed down to us, with regular variations, from parent to child, and through many ancestor species, since life began on the planet. And all plants and animals on Earth belong to a single family because we all inherit the same system of reproduction from one original replicating cell, our last universal common ancestor (LUCA) 3.5 to 3.8 billion years ago.

 


Replication

The DNA molecular structure resembles a zip fastener, where each tooth can be any of four molecular bases.  The bases G-C and A-T are each small organic molecules that at one point are covalently bound to a triphosphate (containing three phosphorous atoms) and a sugar group that binds them in a ribbon.  At their free end Guanine is attracted to Cytosine, with triple hydrogen bonds, and Adenine is attracted to Thymine, with double hydrogen bonds. 

In the following notation: black = Carbon;  blue = Nitrogen;  red = Oxygen; white = Hydrogen.   Bars joining them indicate a covalent bond, an electron shared between the atoms.  A double bar indicates two shared electrons.   

 

  Cytosine (C4H5N3O) has a shape that attracts (fits)   Guanine (C5H5N5O) 


but not  Thymine (C5H6N2O2)  or   Adenine (C5H5N5), that attract (fit) each other.

 

Each of these bases is bound to a ribbon of  sugar molecules and at its other end lightly bonds to a matching base on the other half of the 'zipper' such that when it is 'unzipped' each attracts its opposite number (like magnets attracting the opposite pole) thus recreating a new matching half in the same sequence.

 


DNA replication. 

 

This unzipping and reforming is called self-replication. It is going on continuously in all living things as new cells are created to replace those that die. In an adult human around three quarters of a million of our cells divide every second.  This cell division is the process we call organic life and may continue (usually briefly) after we are legally (brain) dead.

Other chemical mechanisms within the cell translate the genetic information stored in the DNA sequence to manufacture the proteins from which new cells are built and differentiate themselves, organising to become our various organs and to thus arrange themselves to form a human; and not a gorilla or a crocodile or a kola or a rose or a cabbage. The human genome project had now identified 32,185 human genes.

Accurate reproduction is very important to the viability of an organism.  Just as: 'WOLF' does not have the same meaning as 'FOWL' the location and order of sequence G-A-T-C within a particular DNA string (chromosome) will result in a different outcome to the sequence C-A-G-T .   And this difference will influence cell structure and purpose:   'The wolf eats the fowl' has a totally different meaning to: 'The fowl eats the wolf'.

This method of storing and reproducing instructions and data is twice as efficient as the binary method we presently use in electronic devices.  For example the binary processor in your computer or reading device requires each character in in each word in this sentence to be encoded in two bytes (each of 8 characters or bits).  In other words 16 ones and zeros are required for every character on this page (eg 'a' = 0000000001100001) and a similar number for each pixel in a simple colour image.  But DNA can encode the same information (sufficient for every unique character and symbol in every language in the world) in just eight characters.

There are a fraction over 3 billion characters in the human genome (3,079,843,747 base pairs).  In computer terms this is equivalent to about three quarters of a gigabyte of information storage. The same data is stored in the nucleus of each of our cells.  This is in nuclear DNA, before taking into account separate, but smaller, storage in each of the mitochondria (see below). 

A 'gig' isn't much you might say (less than $1's worth) but the actual data storage density is in excess of anything offered by our present electronic technology.  Cells are a lot smaller than the chip in a memory stick - there around a billion cells per cubic centimetre in hard tissue.

This also points to another reality.  Had not this replication chemistry been available, and the conditions for the reactions been just right, life could not have occurred in its earthly form. 

Life relying on another replication method that was say binary would be at a disadvantage and would have to use different replication mechanisms.  If there was a chemistry, at different temperatures and chemical concentrations, allowing say six base pairs it would be different again.  We and our cousins (the other animals, plants and other organisms) that are all descended from the original replicating cell (LUCA - see above) are here because the conditions on Earth were and are just right for our kind of life to prosper.

Elsewhere in the universe it may be different.

 


Gene Mapping

Genes are just patterns of chemical molecules that are held within the replicating DNA mechanism.  The way they are encoded onto DNA can be likened to any other mechanism for copying and recording data: a DVD or even a vinyl record or the memory in this computer.  As a result they can be altered or damaged from time to time and some of these variations are successfully copied into subsequent offspring.  If they are particularly advantageous to survival and reproduction these changes, or mutations, rapidly spread throughout the species, so that over tens of thousands of years, individuals successful in one environmental niche are so different from those successful in another that a new species has formed (followed by a new genus, family, order, and so on). 

This process of periodic differentiation has been likened to the branching of a tree but because of the activity of bacteria and viruses and residual DNA that may be reactivated as well as limited cross-species reproduction  (for example later Humans and Neanderthal) it is no longer believed to be quite that simple.

DNA encodes the instructions for creating each cellular colony, defining each species, and each individual within a species. DNA changes over time in such away that each change is a development on previous generations. So it is possible to trace DNA ancestry back through generations of a particular species over time.  For example, DNA studies are increasingly shedding light on the questions around human origins. 

Most animals, including humans, carry two types of DNA.  Our main genome is carried by the chromosomes in the nucleus of each of our cells. This comes from both our parents. The secondary genome, mtDNA, is carried by bacteria-like organelles within each of our cells, that convert sugars for cell energy, called mitochondria. These are all cloned (reproduced by asexual division) from the mitochondria that were within the original egg cell provided by our mother.

Cells may contain from one mitochondrion to several thousand mitochondria depending on species and cell differentiation.  As a result this is the predominant DNA found in a cellular sample.

So our mtDNA comes only from our mother; in turn from her mother; and so on and mtDNA allows us to map the female ancestral line.  This original egg cell was fertilised by a sperm from our father (sperm do not contribute their mitochondria). Once fertilised, the egg cell then divided repeatedly, differentiating in accordance with the coding instructions in our DNA, into the many cells that form the cellular colony that became 'us'.

Males are differentiated from females by a Y chromosome in place of one X. So sons can only inherit this from their father (like their family name in our culture) and periodic mutations in the DNA of the Y chromosome allow the (actual) male ancestral line to be traced back.

As a result of this work we now know that humans on the planet are all descended from a single group that left Africa less than 70 thousand years ago. 

Recent DNA analysis shows that early humans sometimes interbred with the Neanderthal; a separate hominid subspecies that left Africa much earlier and settled in the Middle East and Europe over quarter of a million years ago.

It's amazing to think that we have only understood it within my lifetime. Now the ancient view that people grow from a seed, provided by their father, and gain the spark of life at 'conception' from a god is totally debunked. So throw away all those ancient texts.

 


Viruses

Viruses have been around since life began but they are 'of life', they are not technically 'alive' because they cannot themselves reproduce. They are extremely small - about 70 microns in diametre - and until the invention of electron microscopes in the 1930's their existance had only been inferred. 

To create copies of themselves they need a host cell with the necessary reproductive mechanisms. Over the millennia viruses have evolved the necessary mechanisms to penetrate cells, much like spermatozoa, and inject their DNA or RNA and capture the host's replication mechanisms so that the infected cell begins manufacturing thousands of virion (virus particle) clones of the invader. These then capture other nearby cells in the host animal or plant; or in similar bacteria.  Huge numbers of infected cells are usually destroyed in the process, sometimes killing the plant or animal.

 

Coronavirus particles (yellow) on the surface of a dying cell (that produced them)
Niaid/National Institutes of Health/Science Photo Library (from 
https://www.newscientist.com)

 

But animals plants and bacteria have become familiar with this threat and have in turn evolved means of dealing with or living with viruses to the extent that some are exploited for the benefit of the host.

In turn viruses evolve new strategies to perpetuate their reproduction. Thus new viruses arise from time to time, sometimes jumping from one species to another when an opportunity arises.

Many animals, including humans, have an immune system that has a memory of harmful viruses and means of neutralising them. Thus, once the animal has been infected and survived, the chances of reinfection are reduced.  Vaccines work by presenting our immune system with a harmless sample that allows it to recognise a particular harmful virus.

Since I first wrote this article the World has suffered a new viral pandemic.  It is a novel corona virus for which we have no established immunity and there is no vaccine.  At the end of June 2020 the Covi-19 virus has already killed half a million people.

It is estimated that this virus will no longer find sufficient vulnerable hosts to spread further after infecting around 70% of the populations in which it is spreading.  It has a case fatality rate of just under 1%, that is, of those who catch it just under one in a hundred die.  

Quarantine restrictions are in place in many countries to protect relatively uninfected areas, with local measures to eliminate 'hot spots'.  But the majority of the world's population, in excess of five billion, are in countries in which it is presently spreading.

Unless a vaccine is available soon it seems inevitable that many millions more will be killed.  The economic consequences are also dire.

 

 

 

 


Terms of Use                                           Copyright