Who is Online

We have 139 guests and no members online

Biosequestration

As previously mentioned the vast proportion of CO2 in the atmosphere is naturally released and is in turn naturally absorbed.  Some is dissolved in rain and ultimately acidifies the oceans but a great deal is absorbed by plants in the process of photosynthesis; consuming water and usually releasing oxygen. 

This is a natural solar collector.  Plant absorption is increased if CO2 levels rise and plants have access to sufficient water and sunlight.  Trials have been undertaken at higher CO2 levels with a number of existing economic plants to determine such things as the ‘fertiliser effect’ higher water uptake and increased solar absorption. 

Obviously producing biofuel or food does not permanently sequester carbon and any credit should only apply the solar energy collected by the process; as this, in turn, reduces dependence on other energy sources. To get a full credit, similar technology might produce cellulose that could be charred and buried to improve soils or other carbon rich materials that could be safely buried in depleted mines or other suitable sites. Charing and burying of bagasse, straw and wood-waste is already a recognised sequestration technology.

It is clear that accelerated CO2 absorption by conventional agriculture and plants, for example by reticulating CO2 to greenhouses or forests, would be costly and would not fully deal with the vast quantities of CO2 involved.  But some plants and bacteria evolved when CO2 levels were very much higher and it appears to be possible to exploit their genome to modify them or other plants and organisms, to produce economically useful materials; at the same time absorbing large volumes of CO2.

Several projects are already in underway internationally.  The most interesting involve algae that could be used to produce diesel fuel, directly or as chemical feedstock.  Other, possibly complimentary, options include modifying food crops like rice (to a C4 plant) so that additional CO2 and sunlight are absorbed (and carbohydrate yields improved).

Again the problem is the scale required to make a difference. A very large solar collection area is required together with plentiful water.  Areas comparable to present broad acre agriculture will be required, probably as shallow lakes.  It would be particularly useful if algae that are comfortable in salt water could be adapted.

Again there are safety issues to be considered. These vast lakes or fields will be filled with genetically modified organisms and the regulatory environment relating to GM organisms and foods will need to be changed accordingly.

 

 

No comments

Travel

India

October 2009

 

 

 

 

In summary

 

India was amazing. It was just as I had been told, read, seen on TV and so on but quite different to what I expected; a physical experience (noise, reactions of and interactions with people, smells and other sensations) rather than an intellectual appreciation.

Read more: India

Fiction, Recollections & News

The Atomic Bomb according to ChatGPT

 

Introduction:

The other day, my regular interlocutors at our local shopping centre regaled me with a new question: "What is AI?" And that turned into a discussion about ChatGPT.

I had to confess that I'd never used it. So, I thought I would 'kill two birds with one stone' and ask ChatGPT, for material for an article for my website.

Since watching the movie Oppenheimer, reviewed elsewhere on this website, I've found myself, from time-to-time, musing about the development of the atomic bomb and it's profound impact on the modern world. 

Nuclear energy has provided a backdrop to my entire life. The first "atomic bombs" were dropped on Japan the month before I was born. Thus, the potential of nuclear energy was first revealed in an horrendous demonstration of mankind's greatest power since the harnessing of fire.

Very soon the atomic reactors, that had been necessary to accumulate sufficient plutonium for the first bombs, were adapted to peaceful use.  Yet, they forever carried the stigma of over a hundred thousand of innocent lives lost, many of them young children, at Hiroshima and Nagasaki.

The fear of world devastation followed, as the US and USSR faced-off with ever more powerful weapons of mass destruction.

The stigma and fear has been unfortunate, because, had we more enthusiastically embraced our new scientific knowledge and capabilities to harness this alternative to fire, the threat to the atmosphere now posed by an orgy of burning might have been mitigated.

Method:

So, for this article on the 'atomic bomb', I asked ChatGPT six questions about:

  1. The Manhattan Project; 
  2. Leo Szilard (the father of the nuclear chain reaction);
  3. Tube Alloys (the British bomb project);
  4. the Hanford site (plutonium production);
  5. uranium enrichment (diffusion and centrifugal); and
  6. the Soviet bomb project.

As ChatGPT takes around 20 seconds to write 1000 words and gives a remarkably different result each time, I asked it each question several times and chose selectively from the results.

This is what ChatGPT told me about 'the bomb':

Read more: The Atomic Bomb according to ChatGPT

Opinions and Philosophy

Discovery of the Higgs boson

 

 

Perhaps the most important physics discovery of my lifetime has finally been announced.  I say 'finally' as its existence has been predicted by the 'Standard Model' for a long time and I have already mentioned this possibility/probability in an earlier article on this website (link).

Its confirmation is important to everyone, not just to physicists working in the field of quantum mechanics.  Like the confirmation of the predictions of Einstein's Theory of Relativity we are now confronted with a new model of reality that has moved beyond an esoteric theory to the understanding that this is how the Universe actually is; at least as far as the Standard Model goes.

Read more: Discovery of the Higgs boson

Terms of Use

Terms of Use                                                                    Copyright