Who is Online

We have 748 guests and no members online

CCS Opportunities in NSW

The impetus for Carbon Capture and Storage (CCS) technology is the observed impact of CO2 on climate change.

Implementing CCS represents a significant additional economic and social cost in terms of:

  • additional equipment maintenance and other running costs;

  • a significant drop in net fuel efficiency and consequent faster resource consumption;

  • a significant increase in transportation infrastructure and its environmental impacts; and

  • some very real additional dangers and safety issues. 

The climate gains made need to more than offset these costs.

In 2005-6 World fossil sourced CO2 production is estimated to have totalled around 28,431.7 million tonnes (from all sources including petroleum)[3].  That year NSW sourced coal released 384.3 million tonnes of CO2 worldwide[4]. NSW coal therefore contributed about 0.13% of the total CO2 released. Of this total, around 91 million tonnes of coal sourced CO2 was released in Australia, predominantly in NSW.

Capture

In 2005-6 around 72% of domestic coal consumption was by electricity generators (65.5 million tonnes); 24% by iron making (21.8 million tonnes); and most of the balance to cement manufacture and smaller furnaces.  Lime calcination, the conversion of limestone (CaCO3) to lime (CaO), for cement, releases significant additional quantities of CO2 (0.8 tonne per tonne of cement produced plus the energy used to heat the process and transport the materials). 

The main metallurgical consumer of coal in NSW is iron smelting at Port Kembla.  This initially produces coke oven and blast furnace gas that is distributed around the plant and used as a furnace fuel and for cogeneration of electricity.  Dissolved carbon in the iron is subsequently converted to COxin the steelmaking process.  While it is conceivable that the CO2 eventually released by various processes could be captured, the diversity of release points would make capture and subsequent separation very difficult and costly to implement within the present technological paradigm. 

The Aluminium industry also uses carbon to reduce the oxide but the energy required is provided by electricity (from coal fired stations) and the main source of carbon is from petroleum (as petroleum coke). The scale of CO2 release is an order of magnitude smaller than iron and steel making but capture may be as feasible if the flue gas was processed with that from a nearby a coal burning power station.  Both NSW based aluminium smelters are in the Hunter Valley, near the power generation.

Cement calcination plants are relatively smaller in scale again, and more geographically disperse. They would need additional equipment and energy to capture and process, then transport, the exhaust CO2 and the difficulties involved would probably preclude capture. 

The best prospects for CO2 capture in NSW are the coal fired power stations, predominantly in the Hunter Valley.  In theory the full CCS applied to the CO2 emissions from coal fired electricity generation could reduce overall fossil fuel based emissions from NSW (including those from petroleum and gas) by as much as 25%.  A CO2 reduction target on this scale requires that all of the CO2 from coal powered electricity generation (including that from existing power stations) is successfully captured and stored.

There are substantial technical problems (that translate into increased costs) in converting the existing Hunter Valley stations to capture the CO2.  These stations are air fired so that most of the input (and output) gas is nitrogen (78% of air).  Nitrogen is semi-inert so most passes through the furnace unchanged but it is heated and leaves the plant at above boiling point so energy is consumed.  Raising the combustion temperature by injecting oxygen increases the small proportion of nitrogen that is oxidised to produce troublesome NOx pollutants.  In addition to nitrogen, CO2, NOx, and water vapour; the oxides of sulphur SOx, ash particles and some other trace elements, including compounds of mercury, are present in the flue gas. If allowed to fall below boiling point before being released the oxides react with the water vapour to make liquid acids that can do serious damage to equipment. Under CCS the CO2 component needs to be flushed out of this gas mixture (captured) and compressed. Several separation technologies are being trialled with some success, including ammonia absorption, but the potential costs and unsolved difficulties remain daunting.

The capture stage can be facilitated if the nitrogen is not fed into the furnace in the first place.  This requires a tonnage oxygen plant (common in the steel industry) to feed the combustion. This together with preliminary coal gasification can provide other benefits including improved combustion and thermal efficiency (at the expense of additional energy, capital, maintenance and operating expenses expended in oxygen production) but an entirely different furnace technology is required (to that presently installed) to gain these benefits.

To date trials around retrofitting more advanced Chinese furnace technology have been directed towards less efficient brown coal based plant in Victoria.

 

 

No comments

Travel

South Korea & China

March 2016

 

 

South Korea

 

 

I hadn't written up our trip to South Korea (in March 2016) but Google Pictures gratuitously put an album together from my Cloud library so I was motivated to add a few words and put it up on my Website.  Normally I would use selected images to illustrate observations about a place visited.  This is the other way about, with a lot of images that I may not have otherwise chosen.  It requires you to go to the link below if you want to see pictures. You may find some of the images interesting and want to by-pass others quickly. Your choice. In addition to the album, Google generated a short movie in an 8mm style - complete with dust flecks. You can see this by clicking the last frame, at the bottom of the album.

A few days in Seoul were followed by travels around the country, helpfully illustrated in the album by Google generated maps: a picture is worth a thousand words; ending back in Seoul before spending a few days in China on the way home to OZ. 

Read more: South Korea & China

Fiction, Recollections & News

The Greatest Aviation Mystery of All Time

 

 

The search for Malaysia Airlines Flight 370 was finally called off in the first week of June 2018.

The flight's disappearance on the morning of 8 March 2014 has been described as the greatest aviation mystery of all time, surpassing the disappearance of Amelia Earhart in 1937.  Whether or no it now holds that record, the fruitless four year search for the missing plane is certainly the most costly in aviation history and MH370 has already spawned more conspiracy theories than the assassination of JFK; the disappearance of Australian PM Harold Holt; and the death of the former Princess Diana of Wales; combined.

Read more: The Greatest Aviation Mystery of All Time

Opinions and Philosophy

The Hydrogen Economy

 

 

 

 

Since I first published an article on this subject I've been taken to task by a young family member for being too negative about the prospects of a Hydrogen Economy, mainly because I failed to mention 'clean green hydrogen' generated from surplus electricity, employing electrolysis.

Back in 1874 Jules Verne had a similar vision but failed to identify the source of the energy, 'doubtless electricity', required to disassociate the hydrogen and oxygen. 

Coal; oil and gas; peat; wood; bagasse; wind; waves; solar radiation; uranium; and so on; are sources of energy.  But electricity is not. 

Electricity (and hydrogen derived from it) is simply a means of transporting and utilising energy - see How does electricity work? on this website.

Read more: The Hydrogen Economy

Terms of Use

Terms of Use                                                                    Copyright