Who is Online

We have 328 guests and no members online

Hot wires

 

Pushing a current through a conductor requires energy.  The difficulty in doing this is called resistance; and is measured in Ohms.  For each Ohm of resistance an electromotive force of 1 Volt is required to cause a current of one Amp to flow.  In other words Resistance = Voltage (drop across the conductor) divided by the current (Amps) in the conductor.  This is called Ohms law and is obvious, a priori, from the definitions of these quantities.

The important things to know about conductors are that: resistance varies depending on the material that the conductor is made from; and the electrical energy used to overcome resistance becomes heat. Read More...

Electrical conductors get hot depending on the current flow; and the heat generated goes up exponentially as the current increases in a wire.

Suppose the lead to a power board in your kitchen is carrying 2 amps and consuming 5 Watts per metre as heat.  This is so small you don’t even notice the lead getting warm. If you add a few more appliances taking the total to 10 amps the heat in the lead will jump, not to 25 watts per metre as you might expect (5x5), but all the way up to 125 watts per metre; at which point it will probably burst into flames. This is why commercial power boards have a big safety margin with wires around twice as heavy as those in this example; so there is only moderate heating even at 15 amps.

Resistance falls as conductors get fatter, in proportion to cross-sectional area. This is obvious because two identical conductors (or water pipes) side-by-side carry twice the current of one.

You may have noticed that the cord to some high current appliances, like heaters, kettles and vacuum cleaners, gets warm.  To avoid heating the wires in your house too much and possibly burning it down, properly installed wiring has current ratings well above a safe limit; electricians are careful that all strands of a cable are terminated; and the current is limited by fuses and other kinds of current breakers. 

 

image014

 

We often want some wires in home appliances to get hot:  electric heaters, kettles, toasters, and so on work on this principle; an incandescent light bulb generates so much heat that the filament glows white hot; a fuse wire melts if the current gets above a certain limit.

But unless you want a bit of extra warmth, heating wiring in buildings is wasteful and a fire risk.  It is particularly wasteful in the street or in wires running for miles in the country.  Many millions of kilowatt hours of electricity can be lost heating the countryside.

The actual losses are equivalent to approximately 10 percent of the total electricity transported between power stations and market customers.  In long links and in those carrying high currents, from time to time, the losses can be much higher than this.

 

 

No comments

Travel

Argentina & Uruguay

 

 

In October 2011 our little group: Sonia, Craig, Wendy and Richard visited Argentina. We spent two periods of time in Buenos Aires; at the start and at the end of our trip; and we two nights at the Iguassu Falls.

Read more: Argentina & Uruguay

Fiction, Recollections & News

The Craft

 

Introduction: 

 

The Craft is an e-novella about Witchcraft in a future setting.  It's a prequel to my dystopian novella: The Cloud: set in the last half of the 21st century - after The Great Famine.

 Since writing this I have added a preface, concerning witchcraft, that you can read here...

 

Next >

Read more: The Craft

Opinions and Philosophy

Manufacturing in Australia

 

 

 

This article was written in August 2011 after a career of many years concerned with Business Development in New South Wales Australia. I've not replaced it because, while the detailed economic parameters have changed, the underlying economic arguments remain the same (and it was a lot of work that I don't wish to repeat) for example:  

  • between Oct 2010 and April 2013 the Australian dollar exceeded the value of the US dollar and that was seriously impacting local manufacturing, particularly exporters;
  • as a result, in November 2011, the RBA (Reserve Bank of Australia) reduced the cash rate (%) from 4.75 to 4.5 and a month later to 4.25; yet
  • the dollar stayed stubbornly high until 2015, mainly due to a favourable balance of trade in commodities and to Australia's attraction to foreign investors following the Global Financial Crisis, that Australia had largely avoided.

 

 

2011 introduction:

Manufacturing viability is back in the news.

The loss of manufacturing jobs in the steel industry has been a rallying point for unions and employers' groups. The trigger was the announcement of the closure of the No 6 blast furnace at the BlueScope plant at Port Kembla.  This furnace is well into its present campaign and would have eventually required a very costly reline to keep operating.  The company says the loss of export sales does not justify its continued operation. The  remaining No 5 blast furnace underwent a major reline in 2009.  The immediate impact of the closure will be a halving of iron production; and correspondingly of downstream steel manufacture. BlueScope will also close the aging strip-rolling facility at Western Port in Victoria, originally designed to meet the automotive demand in Victoria and South Australia.

800 jobs will go at Port Kembla, 200 at Western Port and another 400 from local contractors.  The other Australian steelmaker OneSteel has also recently announced a workforce reduction of 400 jobs.

This announcement has reignited the 20th Century free trade versus protectionist economic and political debate. Labor backbenchers and the Greens want a Parliamentary enquiry. The Prime Minister (Julia Gillard) reportedly initially agreed, then, perhaps smelling trouble, demurred. No doubt 'Sir Humphrey' lurks not far back in the shadows. 

 

 

So what has and hasn't changed (disregarding a world pandemic presently raging)?

 

Read more: Manufacturing in Australia

Terms of Use

Terms of Use                                                                    Copyright