*take nothing for granted!
Unless otherwise indicated all photos © Richard McKie 2005 - 2015

Who is Online

We have 46 guests and no members online

Translate to another language

AC and DC

 

When the current is in one direction only we call it direct current DC; and when the ‘shoves’ are in one direction and then the other, back and forth like a swing, we call it alternating current or AC. 

 

image016

 

Both carry usable energy but AC makes less efficient use of the conductor as there are two points each cycle when nothing is happening and high currents, and greater loss, happens at the peaks.

 

 

So how do we make electrical currents flow?

If we want to carry energy along a conductor we need to stimulate electrons to start passing it on as one shove to the next; in the desired direction.

By far the most common way of doing this is by passing a conductive wire through a magnetic field; or a passing a magnetic field across a wire. This gives the electrons a shove along the axis of the wire. The field has to be moving relative to the wire. A stationary field like the Earth's magnetic field requires the wire to be moving.

You have probably tried to push the matching poles of two magnets together.  In the same way a magnet pushes the electrons along a wire.  This push-back becomes stronger if we resist the current by putting it to use in a circuit; for example to heat a wire or make another magnet move in a motor.

It is quite easy to make a coil of wire into an electro-magnet. This can be as strong as most magnets you might have played with.

This is how the alternator in your car makes electricity to charge the battery.  It has a whole bunch of wires (usually end to end in a coil) and every turn of the shaft rotates these wires through a magnetic field.  The effort required to do this is in direct relation to the energy required to charge the battery.

Most electrical generators work on this simple principle.  It very efficiently turns mechanical energy into electricity; or back again to mechanical energy in an electric motor.  Read More...

It's quite easy (as a child) to make one yourself and run it with a toy 'donkey engine' to light a light bulb.

 

3phase-rmf-noadd-60f-airopt
3 Phase Alternator Operation (the rotating bit here can be a permanent magnet)
source: Wikipedia

 

Water pressure can be used to rotate the shaft of an alternator (an AC generator) below a dam.

 

image018

 

Steam is used to drive a turbo-alternator in a coal, gas, geothermal or nuclear power-station.  Petrol oil or gas engines; or wind can be used to rotate the shaft of an alternator; and tides, currents and waves drive machines to do the same thing.

There are many images of various types of power generation elsewhere on this website.

 

 

Other ways of making currents

 

But we can also get currents moving in other, harder to understand, ways.

A photovoltaic solar cell exploits the ability of semiconductors to allow electrons to move in one direction only.  If these are then excited by energy from photons (a type of boson), they get pumped along specially designed current paths in one direction only.

This is oversimplifying a phenomenon requiring knowledge of depletion layers, electron tunnelling, and even quantum mechanics for a full explanation. You need to know a bit about semiconductors.  Read More...

Photovoltaic solar cells are still in development and a lot of work is going into improving their conversion efficiency and bringing down their cost.

It is hoped that someday they will be able to provide up to 20% of our energy requirements;  possibly more if we can find an economical way of storing energy from day to night and season to season.

Thermocouples employ the flow of heat in a metal from a hot area to a cold one called the Seebeck effect.  Electrons in the hotter areas are more energetic than in the cooler part causing a voltage gradient.   Electrons flow at different rates in different metals so if two dissimilar metals are in electrical contact near the source of heat the net difference in voltage gradient (in response to the same heat gradient) will result in a current flowing from one metal to the other.   

Thus some of the heat flowing from hot to cold is converted to electricity.  This is what is helping to power the recent Mars Lander: Curiosity. It uses decaying plutonium to provide the heat to thermocouples.  These provide base load energy at night when Mars is very cold.  Curiosity also has solar panels.

Despite maximising the differential by using very different metal alloys, the conversion efficiency of heat to electricity is still relatively poor, compared to mechanical conversion.   But efficiency is a secondary issue if the energy source is plentiful and free.  The biggest issue is the equipment cost: how much energy is converted per dollar of device? 

Efficiency does have an impact on physical size.  This may be important is space is limited.  This becomes evident when we calculate how big an area of solar panels some industries might need.

For example an aluminium smelter would need many square kilometres of solar panels (around 30 million present generation commercial panels) to supply the electricity required to separate the metal from alumina.  This would not be feasible anyway as the aluminium pots can't be shut-down overnight or on dull days.

Electricity can also be produced by ion exchange.  This is the way batteries and fuel cells work. 

As already mentioned ions are negatively or positively charged atoms.  These can be caused to flow by chemical and sometimes physical means.

For example, changing ion concentrations across a barrier, through which only some ions can pass (osmosis), is used very widely in nature. This happens in our body cells to produce nerve signals and; in the case of some eels, produces thousands of volts. Read More...

 

 

Add comment


Security code
Refresh


    Have you read this???     -  this content changes with each opening of a menu item


Travel

Bridge over the River Kwai

 

 

In 1957-58 the film ‘The Bridge on the River Kwai‘ was ground breaking.  It was remarkable for being mainly shot on location (in Ceylon not Thailand) rather than in a studio and for involving the construction and demolition of a real, fully functioning rail bridge.   It's still regarded by many as one of the finest movies ever made. 

One of the things a tourist to Bangkok is encouraged to do is to take a day trip to the actual bridge.

Read more ...

Fiction, Recollections & News

His life in a can

A Short Story

 

 

"She’s put out a beer for me!   That’s so thoughtful!"  He feels shamed, just when he was thinking she takes him for granted.

He’s been slaving away out here all morning in the sweltering heat, cutting-back this enormous bloody bougainvillea that she keeps nagging him about.  It’s green waste tomorrow and he’s taken the day off, from the monotony of his daily commute to a job that he has long since mastered, to get this done.  

He’s bleeding where the thorns have torn at his shirtless torso.  His sweat makes pink runnels in the grey dust that is thick on his office pale skin.  The scratches sting as the salty rivulets reach them and he’s not sure that he hasn’t had too much sun.  He knows he’ll be sore in the office tomorrow.

Read more ...

Opinions and Philosophy

Syria - again

 

A fortnight ago I was moved to suggest that it was possible that the alleged gas attack in Syria might not be the work of the Syrian Army.  I withdrew the posting when more convincing evidence of Army involvement became available.

Because of our visit to Syria took place just before the most recent troubles began, I have been, perhaps, more interested than most.  I wanted to know why Syria is automatically assumed to be guilty when there are some very nasty groups on the other side?

We are fed so much doctored information, spin, that it is hard to get the facts even when we are directly involved.

So to claim that I know what is actually going on in Syria is fanciful.  Assad vehemently denies responsibility; the Russians are doubtful; and the inspectors have not yet reported.  But the certainty, and aggressive language, of the Western leaders accusing Syria of this latest incident seem extraordinary - do they know something that they are not revealing publicly?

As I have explained elsewhere I have fond memories of Damascus and of Syria in general.  Damascus was the most pleasant and interesting of the cities we stayed in; lacking the extremes of poverty and wealth we saw in Cairo (and in Egypt in general) or the more western normality of Amman in Jordan. 

Read more ...

Terms of Use                                           Copyright