Who is Online

We have 198 guests and no members online

What is electricity - really?

 

Above I invited you to think of electricity as a fluid of electricity running through a conductor that acts like a pipe.

According to our present conceptual model electricity is due to the movement of electrons in a conductor. Electrons are negatively charged fermions (particles that make up an atom) that are generally happy to hang around an atom to balance the positive charge of its nucleus.  Read More...

Electrons are envisaged as milling around in the general vicinity but often at a great distance, relative to the size of the nucleus, like planets around the sun.  The outer electrons define the physical size of an atom. Contrary to some pictures you might have seen they do not orbit elliptically like planets but occupy a space determined by their wave function and energy state.  They are happy bouncing around in this space unless something, like a photon of light or heat, encourages them to jump to another energy level. 

 

 

Conductors and insulators

Some elements, like the metals, bond to each other in such a way that outer electrons can pass energy on to the next; or perhaps get shared in one big cloud. 

By stimulating electrons to move we can make them carry energy along a conductor but this is more like the baton in a relay or an ‘Indian wave’ in a stadium than a flow of water.  Each one in the chain just gives the next one in line a ‘shove’; pass it on. The ‘shove’ goes down the conductor and after passing-on the ‘shove’ each electron continues to hang about as before. 

On the other hand, non-metals tend to form molecules in which the electrons are not free to pass energy on.  A material in which no current can flow we call an insulator.  Read More...

Whether an atom is a metal or not depends on the number of protons in the nucleus.  After disregarding the first two (hydrogen and helium), elements can be lined up nicely by their proton count (roughly half their atomic weight) in a table: the first-row pair of 8 then 18 then 32 columns wide; so that every 8th, 18th then 32nd is similar in properties; for example: a noble gas, a halogen or an alkali.  

This pattern was observed by chemists before it was explained.  Once recognised it allowed chemists to see the gaps and find the missing elements.  This regular pattern of repetition is called the periodic table of the elements. 

 

Periodic table

 

Quantum mechanics now provides a model predicting/describing/explaining this observed behaviour. 

Metals (the salmon-coloured elements above) are not the only conductors.  Some non-metals like carbon have one form, graphite, which is a good conductor and another, diamond, which is a good insulator. 

Selenium, another non-metal, has semiconducting properties and was widely used before silicone in solid state rectifiers.  As a schoolboy I built several battery chargers and power supplies employing  selenium rectifiers which were then easily obtained from disposals stores.  

Black phosphorous is another non-metallic conductor.

If an electron is stripped from and atom (or it acquires extra electron) it is said to be ionised and if the whole atom is mobile; for example: in a fluid (gas or liquid) the whole atom can act as a transport for electrons or of positive charge (an excess of protons). 

For example, salt water is a good conductor and even the earth (rocks and soil) can be used as the return conductor in a circuit. 

As kids we used this in our one-wire telephone to friends in neighbouring houses.

 

 

No comments

Travel

Japan

 

 

 

 

In the second week of May 2017 our small group of habitual fellow travellers Craig and Sonia; Wendy and I; took a package introductory tour: Discover Japan 2017 visiting: Narita; Tokyo; Yokohama; Atami; Toyohashi; Kyoto; and Osaka.  

Read more: Japan

Fiction, Recollections & News

DUNE

 

Last week I went to see ‘DUNE’, the movie.

It’s the second big-screen attempt to make a movie of the book, if you don’t count the first ‘Star Wars’, that borrows shamelessly from Frank Herbert’s Si-Fi classic.

Read more: DUNE

Opinions and Philosophy

Electricity price increases

 

 

14 April 2011

New South Wales electricity users are to suffer another round of hefty price increases; with more to come.

The Independent Pricing and Regulatory Tribunal (IPART) has announced that electricity prices for the average New South Wales resident will increase by 17.6 per cent from July.  Sydney customers will pay on average about $230 more each year, while rural customers will face an extra $316 in charges.  IPART says it is recommending the increases because of costs associated with energy firms complying with the federal government's Renewable Energy Target (RET).  The RET requires energy firms to source power from renewable sources such as solar or wind.

What is this about and how does it relate to the planned carbon tax?

If you want to know more read here and here.

Terms of Use

Terms of Use                                                                    Copyright